PersamaanGaris Lurus Kelas XI Jadi, rumus untuk menentukan persamaan garis yang melalui dua titik koordinat adalah. 3. Menentukan Koordinat Titik Potong dari Dua Garis Lurus Coba kamu perhatikan Gambar 3.12. Dari Gambar 3.12 , terdapat dua garis dalam bidang koordinat, yaitu garis k dan l. Dalam Gambar 3.12(a) , kedua garis tersebut sejajar. Garislurus yang tegak lurus dengan garis garis 2x + y - 3 = 0 mempunyai gradien m2 ,maka: m 1 . m 2 = -1. -2 . m 2 = -1. m 2 = ½. Persamaan garis lurus yang melalui (-2,1) dan mempunyai gradien = ½. y - y 1 = m (x - x 1) y - 1 = ½ (x + 2) 2y -2 = x + 2. x - 2y + 4 = 0. PenutupGuru memberikan penekanan materi Persamaan Garis Lurus Mengadakan refleksi Pertemuan 2 dst fI. Penilaian, Pembelajaran Remedial, dan Pengayaan 1. Penilaian a. Prosedur Penilaian Aspek yang Teknik No Waktu Penilaian dinilai/dikembangkan Penilaian 1. Sikap Pengamatan Selama pembelajaran dan saat diskusi 2. DuaGaris Tegak Lurus Persamaan Garis dengan m dan melalui titik (x 1 , y 1 Persamaan Garis melalui titik (x 1 y 1 ) dan (x 2 , y 2 Dua Garis Berpotongan Dua Garis Berimpit ( PERSAMAAN GARIS LURUS) Bahan Ajar Matematika Kelas VIII - Tahun Ajaran 2020-2021 SMP ISLAM PLUS ALMUJTABA 3 Apakah yang dimaksud dengan kemiringan pada garis lurus? rppk13 persamaan garis lurus smp kelas 8: Contoh RPP K13 Tentang Persamaan Garis Lurus SMP Kelas 8 - Untuk guru yang sedang membutuhkan contoh RPP kurikulum 2013 mata pelajaran Matematika.Melalui blog sederhana ini kami menyediakan contoh RPP matematika kelas 8 yang dapat bapak ibu guru lihat dibawah serta dapat mendownload file tersebut sudah kami sediakan. Jadi Persamaan garis yang melalui titik tersebut adalah 5x - 3y + 5 = 0. Jawabannya ( D ). Itulah pembahasan contoh soal mengenai materi persamaan garis lurs, semoga bermanfaat dan mudah untuk dipahami yah. 2x- y + 1 = 0, sehingga bentuk umum yang lain untuk persamaan garis lurus dapat dituliskan sebagai Ax + By + C = 0, dengan x dan y sebagai peubah serta A, B, dan C konstanta. Bentuk tersebut dinamakan bentuk implisit. Tentukan persamaan garis yang melalui titik (2,3) dan sejajar dengan garis y = 2x - 5! jawab : y = 2x - 5 maka m = 2 m PersamaanDari Garis Lurus Yang Melewati 2 Titik yakni ( x1 , y1 ) serta ( x2 , y2 ). y - y1 / y2 - y1 = x - x1 / x2 - x1 Contoh Soal dan Pembahasan Soal 1. Persamaan dari garis yang melalui (−1, 2) serta tegak berhadapan pada garis 4y = − 3x + 5 ialah . A. 4x - 3y + 10 = 0 B. 4x - 3y - 10 = 0 C. 3x + 4y - 5 = 0 D. 3x + 4y + 5 = 0 Jawab: Untukmencari persamaan sebuah garis lurus ada beberapa rumus yang bisa dipakai. Bisa kombinasi dua buah titik dan juga kombinasi gradien dengan satu buah titik yang diketahui. Untuk kesempatan ini akan dibahas cara mencari persamaan dengan menggunakan dua buah titik yang diketahui. Misalnya sebuah garis melalui titik (x 1,y 1) dan (x 2,y 2 31. Bilangan Arah dan Cosiinus Garis. Sepasang bilangan berarah suatu garis adalah komponen-komponen skalar sembarang vektor (tidak nol) yang terletak pada garis itu.. Perhatikan G ambar 3.1 berikut :. Gambar 3.1.a. Dalam hal ini akan dicari bilangan arah dari garis g yang melalui titik P 1 (x 1, y 1) dan P 2 (x 2, y 2). Pasangan bilangan-bilangan berarah suatu garis lurus adalah banyak. x6RTu. Ilustrasi oleh Persamaan garis lurus adalah suatu perbandingan antara koordinat y dan koordinat x dari dua titik yang terletak pada sebuah garis. Sedangkan garis lurus sendiri yaitu kumpulan dari titik – titik yang sejajar dan garis lurus dapat dinyatakan dalam berbagai bentuk. Beberapa contoh penerapan persamaan garis misalnya seperti penghitungan sistem persamaan linear dua variable dengan menggunakan grafik menggunakan konsep persamaan garis lurus, percobaan pelemparan bola yang membentuk kurva persamaan kuadrat, dan mobil yang melewati lintasan berbentuk lingkaran persamaan lingkaran. Dibawah ini beberapa contoh untuk menyatakan persamaan garis lurus, yaitu y = mxy = -mxy = ax = aax + by = abax – by = -abdan lain-lain Bentuk Umum Persamaan Garis LurusPengertian GradienRumus Persamaan Garis LurusContoh Soal dan Pembahasan Bentuk Umum Persamaan Garis Lurus Bentuk umum persamaan garis lurus yaitu ax + by + c = 0. Persamaan garis lurus dapat dilukis dalam koordinat kartesius. Kemudian cara untuk menentukan persamaan garis dari suatu grafik pada koordinat kartesius, perhatikan gambar berikut Pada grafik di atas terdapat garis lurus yang melalui koordinat 0, 4 dan 2, 0. Persamaan garis melalui dua titik dirumuskan dengan Misalkan x1, y1 = 0, 4 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1y – 4/0 – 4 = x – 0/2 – 0y – 4/-4 = x/22y – 4 = – 4x2y – 8 = -4x4x + 2y – 8 = 0 Persamaan garis tersebut dapat disederhanakan menjadi 2x + y – 4 = 0. Keterangan x, y variabelx1, y1; x2, y2 titik-titik yang dilalui oleh garis Cara cepat menentukan persamaan garis yaitu Mengalikan absis titik potong sumbu-x dengan y serta mengalikan ordinat titik potong sumbu-y dengan x dengan hasil merupakan perkalian absis titik potong sumbu-x dengan ordinat titik potong sumbu-y. Misalkan pada gambar di atas titik potong sumbu-x dan sumbu-y yaitu 2,0 dan 0, 4 sehingga menjadi 4x + 2y = 8 Jika kedua ruas dikurangi 8 diperoleh 4x + 2y – 8 = 0 dapat disederhanakan menjadi 2x + y – 4 = 0. Pengertian Gradien Gradien yaitu Perbandingan komponen y dan komponen x , atau disebut juga dengan kecondongan sebuah garis. Lambang dari suatu gradien yaitu huruf “m”. Gradien juga dapat dinyatakan sebagai nilai dari kemiringan suatu garis dan dapat dinyatakan dengan perbandingan Δy/Δx Perhatikan gambar dibawah ini untuk menentukan gradien pada sebuah persamaan garis berikut Berikut ini rumus mencari gradien garis dengan beberapa jenis persamaan Gradien dari persamaan ax + by + c = 0 Gradien yang melalui titik pusat 0 , 0 dan titik a , b m = b/a m = b/a Gradien Yang melalui titik x1 , y 1 dan x2 , y2 m = y1 – y2 / x1 – x2 atau m = y2 – y1 / x2 – x1 Gradien garis yang saling sejajar / / m = sama atau jika dilambangkan adalah m1 = m2 Gradien garis yang saling tegak lurus lawan dan kebalikan m = -1 atau m1 x m2 = -1 Rumus Persamaan Garis Lurus 1. Persamaan Garis Lurus bentuk umum y = mx Persamaan yang melalui titik pusat 0 , 0 dan bergradien m . Contoh Tentukan persamaan garis lurus yang melalui titik pusat 0 , 0 dan bergradien 2 ! Jawab y = mx y = 2 x 2. y = mx + c Persamaan garis yang / / dengan y = mx dan bergradien m Persamaan garis yang melalui titik 0 , c dan bergradien m. 0 , c adalah titik potong sumbu y . 3. Persamaan Garis Lurus Yang Melalui titik x1 , y1 dan bergradien m persamaannya yaitu y – y1 = m x – x1 4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu x1 , y 1 dan x2 , y2 . Contoh Soal dan Pembahasan Persamaan garis yang melalui titik 3, 1 dan 2, 0 adalah Pembahasan Misalkan x1, y1 = 3, 1 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1 y – 1/0 – 1 = x – 3/2 – 3 y – 1/-1 = x – 3/-1 -1y – 1 = -1 x – 3 -y + 1 = -x + 3 x – y – 2 = 0 Jawaban x – y – 2 = 0 2. Tentukan Gradien garis yang melalui titik 0 , 0 dengan titik A -20 , 25 ? Pembahasan Diketahui Titik 0 , 0 Titik A -20 , 25 Ditanya m = . . .? Jawab m = b / a = 25 / -20 = – 5/4 3. Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5 ? Pembahasan Diketahui Titik pusat koordinat 0 , 0 m = -4/5 Ditanya Persamaan garis lurus = . . .? Jawab y = mxy = -4 / 5 x-4y = 5x-4y -5y = 0 4y + 5y = 0 4. Persamaan garis lurus yang melalui titik 0 , -2 dan m = 3/4 adalah . . .? Pembahasan Diketahui Titik garis 0 , -2 m = 3 / 4 Ditanya Persamaan garis = . . .? Jawab Cara 1y = mx + cy = 3/4 x + -2 x4 4y = 3x – 8 -3x + 4y + 8 = 0 Cara 2y – y1 = m x – x1 y – -2 = 3/4 x – 0 y + 2 = 3/4 x x4 4y + 8 = 3x -3y + 4y + 8 5. Tentukan persamaan garis Z yang melalui titik 4 , 5 dan -5 , 3 ? Pembahasan Diketahui Titik A 4 , 5 Titik B -5 , 3 Ditanya Persamaan garis Z = . . .? Jawab Cara 1Langkah pertama yaitu mencari gradien terlebih dahulu m = y1 – y2 / x1 – x2m = 5 – 3 / 4 – -5 m = 2 / 9 Selanjutnya yaitu memasukkan ke dalam rumus Persamaan garis melalui titik 4 , 5 dan bergradien 2 / 9y – y1 = m x – x1 y – 5 = 2/9 x – 4 y – 5 = 2/9x – 8/ 9y = 2/9 x – 8 / 9 + 5y = 2/9 x – 8/9 + 45 /9y = 2/9x – 37 / 9 Cara 2Tanpa mencari gradien, yaitu dengan cara y – 5 / 3 – 5 = x – 4 / -5 – 4y – 5 / -2 = x – 4 / -9-9 y – 5 = -2 x – 4 -9y + 45 = -2x + 8-9y + 2x +45 – 8 = 02x – 9y + 37 9 2/9 x – y + 37 / 9 y = 2/9x + 37 / 9 Itulah pembahasan tentang persamaan garis lurus, baik dari bentuk umum, rumus, contoh soal beserta pembahasannya. Semoga bermanfaat! Referensi Persamaan Garis Lurus Persamaan Garis Lurus & Singgung Pengertian, Rumus, dan Contoh Soal Sebelum kita mempelajari tentang rumus – rumus persamaan garis lurus, kita harus memahami terlebih dahulu pengertian dari persamaan garis lurus itu sendiri. Dalam sebuah persamaan garis lurus ada satu komponen yang tidak dapat terlepas darinya yaitu Gradien . Apakah yang dimaksud dengan gradien? Perhaikan penjelasan di bawah ini A. Pengertian Persamaan Garis Lurus Dan Gradien Persamaan Garis lurus yaitu suatu perbandingan antara koordinat y dan koordinat x dari dua titik yang terletak pada sebuah garis . Gradien yaitu Perbandingan komponen y dan komponen x , atau disebut juga dengan kecondongan sebuah garis. Lambang dari suatu gradien yaitu huruf “m” . Gradien dari persamaan ax + by + c = 0 - Gradien yang melalui titik pusat 0 , 0 dan titik a , b m = b/a - Gradien Yang melalui titik x1 , y 1 dan x2 , y2 m = y1 – y2 / x1 – x2 atau m = y2 – y1 / x2 – x1 - Gradien garis yang saling sejajar / / m = sama atau jika dilambangkan adalah m1 = m2 - Gradien garis yang saling tegak lurus lawan dan kebalikan m = -1 atau m1 x m2 = -1 B. Rumus Persamaan Garis Lurus 1. Persamaan Garis Lurus bentuk umum y = mx -> persamaan yang melalui titik pusat 0 , 0 dan bergradien m. Contoh Tentukan persamaan garis lurus yang melalui titik pusat 0 , 0 dan bergradien 2 ! Jawab y = mx y = 2 x 2. y = mx + c ->Persamaan garis yang / / dengan y = mx dan bergradien m . -> Persamaan garis yang melalui titik 0 , c dan bergradien m . 0 , c adalah titik potong sumbu y . 3. Persamaan Garis Lurus Yang Melalui titik x1 , y1 dan bergradien m . persamaannya yaitu y – y1 = m x – x1 4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu x1 , y 1 dan x2 , y2 . Contoh Soal Tentukan Gradien garis yang melalui titik 0 , 0 dengan titik A -20 , 25 Tentukan Gradien garis yang melalui titik A -4 , 7 dan B 2 , -2 Tentuka Gradien garis dengan persamaan garis 4x + 5y – 6 = 0 Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5 Persamaan garis lurus yang melalui titik 0 , -2 dan m = 3/4 adalah . . . Tentukan persamaan garis G yang melalui garis 0 , 4 dan sejajar dengan garis H yang melalui titik pusat koordinat dan titik 3 ,2 Tentukan persamaan garis Z yang melalui titik 4 , 5 dan -5 , 3 Baca juga Rumus Fungsi Persamaan Kuadrat Matematika. Penyelesaian 1. Diketahui Titik 0 , 0 dan Titik A -4 , 7 Ditanya m = . . .? Jawab m = b / a = 25 / -20 = – 5/4 Titik A -4 , 7 dan TitikB 2 , -2 Ditanya m = . . ? Jawab m= y1 – y2 / x1 – x2 m = 7 – -2 / -4 -2 m = 9 / -6 m = – 3/2 3. Diketahui persamaan 4x + 5y – 6 = 0 Ditanya m = . . .? m = -a / b = -4 / 5 titik pusat koordinat 0 , 0 m = -4/5 Ditanya persamaan garis lurus = . . .? Jawab y = mx y = -4 / 5 x -4y = 5x -4y -5y = 0 4y + 5y = 0 5. Diketahui titik garis 0 , -2 m = 3 / 4 Ditanya Persamaan garis = . . .? Jawab cara 1 y = mx + c y = 3/4 x + -2 x4 4y = 3x – 8 -3x + 4y + 8 = 0 cara 2 y – y1 = m x – x1 y – -2 = 3/4 x – 0 y + 2 = 3/4 x x4 4y + 8 = 3x -3y + 4y + 8 6. Diketahui Titik koordinat 0 , 0 dan titik 3 , 2 Ditanya Persamaan garis G = . . .? Jawab Langkah pertama kita tentuka gradiennya terlebih dahulu , yaitu m = y2 – y1 / x2 – x1 = 2 – 0 / 3 – 0 = 2/ 3 Karena Garis G // H , maka gradiennya adalah 2/3 DAN Melalui titik 0 , 4 , maka persamaan garisnya adalah y = mx + c y = 2 / 3 x + 4 x3 3y = 2x + 12 3y – 2x – 12 = 0 2x – 3y + 12 = 0 7. Diketahui titik A 4 , 5 titik B -5 , 3 Ditanya Persamaan garis Z = . . .? Jawab Cara 1 Langkah pertama yaitu mencari gradien terlebih dahulu m = y1 – y2 / x1 – x2 = 5 – 3 / 4 – -5 = 2 / 9 Selanjutnya yaitu memasukkan ke dalam rumus Persamaan garis melalui titik 4 , 5 dan bergradien 2 / 9 y – y1 = m x – x1 y – 5 = 2/9 x – 4 y – 5 = 2/9x – 8/ 9 y = 2/9 x – 8 / 9 + 5 y = 2/9 x – 8/9 + 45 /9 y = 2/9x – 37 / 9 Cara 2 Tanpa mencari gradien, yaitu dengan cara y – 5 / 3 – 5 = x – 4 / -5 – 4 y – 5 / -2 = x – 4 / -9 -9 y – 5 = -2 x – 4 -9y + 45 = -2x + 8 -9y + 2x +45 – 8 = 0 2x – 9y + 37 9 2/9 x – y + 37 / 9 y = 2/9x + 37 / 9 Demikian penjelasan mengenai rumus persamaan garis lurus dan beberapa contohnya. Semoga dengan penjelasan di atas, sedikit membantu memecahkan permasalahan dalam mengerjakan soal yang berhubungan dengan persamaan garis lurus. Inti dari persamaan garis lurus adalah memahami apa itu gradien dan memahami antara titik yang dilalui baik titik pusat koordinat , titik koordinat y ataupun titik koordinat x. Atau jika dilambangkan yaitu titik pusat koordinat 0 , 0 , titik koordinat x1 , y1 dan x2 , y 2 . Semoga bermanfaat . . . .